
$ git branch

$ git logs

$ git fetch

$ git status

GIT
CHEAT
SHEET



SETUP & INIT

Configuring user information, 
initializing and cloning repositories.

STAGE & SNAPSHOT

Working with snapshots and the
Git staging area.

$ git init $ git status

$ git add [file]

Add a file as it looks now to your 
next commit (stage).

Local Copy of the
Repository

Remote 
Repository at [URL]

Local Copy of the
Repository

 $ git clone [url]

Retrieve an entire repository from
a hosted location via URL.

</>

git clone [URL]

</>

git clone [URL]

Working
Directory

git add [file]

Staging
Area

(Stage)

Initialize an existing directory as a
Git repository.

Show modified files in working directory, 
staged for your next commit.

Normal Directory Git Repository

git init Git Status

Working
Directory

Staged
Snapshot

Unstaged
Snapshot

Git Cheatsheet01



$ git reset [file]

git diff --staged

$ git commit -m “[descriptive message]”

Commit your staged content as a
new commit snapshot.

$ git diff

Diff of what is changed but not staged

Unstage a file while retaining the
changes in working directory.

Diff of what is staged but not
yet commited.

Working
Directory

git add [file]

Staging
Area

(Stage)

git reset [file]
(Unstage)

Staging
Area

Working
Directory

git diff

=

Staging
Area

Commit
Historygit diff --staged

=
HEAD

Working
Directory

Staging
Area

Git Repository
(Commit History)

git commit

git add

BRANCH & MERGE

Isolating work in branches, changing 
context, and integrating changes.

$ git branch

List your branches. A * will appear next to 
the currently active branch.

Branch 1

Branch 2

*Main Branch

Git Cheatsheet02



$ git merge [branch]

$ git log

Add a file as it looks now to your 
next commit (stage).

$ git branch [branch-name]

Create a new branch at the
current commit.

Merge the specified branchʼs history
into the current one.

$ git checkout

Switch to another branch and check it
out into your working directory.

[branch-name]

Branch 2

Main Branch
git branch

[branch-name]

git checkout Branch_1

*Branch_1
Main Branch

Branch_1

*Main Branch

Main Branch

Branch 2

git merge

New Feature

git log

Git Logs

Git Repository

commit 21a67
Author : xyz
Date: Mon May 16 16:03:16 2022
Commit Message

commit fb555
Author : ABC
Date: Tue May 17 09:05:45 2022
Commit Message

commit 3ecd3
Author : XYZ
Date: Sun May 22 19:45:34 2022
Commit Message

commit 21a67

commit fb555

commit 3ecd3

Git Cheatsheet03



INSPECT & COMPARE

Configuring user information, 
initializing and cloning repositories.

$ git log branchB..branchA $ git diff branchB...branchA

$ git show [SHA]

Show any object in Git in
human-readable format.

 $ git log --follow [file]

Show the commits that changed file,
even across renames.

Show the commits on branchA that
are not on branchB.

Show the diff of what is in branchA
that is not in branchB.

git log
branchB

...
branchA

Git Repository

branchB branchA

Git Logs

commit 181a9
Author : XYZ
Date: Mon May 16 16:03:16 2022
Commit Message

commit c7eaf
Author : ABC
Date: Tue May 17 09:05:45 2022
Commit Message

commit 181a9

commit c7eaf
git d

iff branchB...b
ranchA

branchA

branchB

commit 715c3

git show 715c3

commit 715c3
Author : XYZ
Date: Mon May 16 16:03:16 2022
Commit Message

File1
File1 Changes

File2
File2 Changes

...

Git Cheatsheet04



TRACKING PATH CHANGES

Versioning file removes and
path changes.

$ git rm [file]

$ git log --stat -M

Show all commit logs with indication
of any paths that moved.

Delete the file from the project and
stage the removal for commit.

+

Git Repository

git rm [file]

(Stage the removal)

$ git mv [existing-path] [new-path]

Change an existing file path and
stage the move.

+

Git Repository

git mv [file]

(Stage the removal)

IGNORING PATTERNS

Preventing unintentional staging
or commiting of files.

logs/
*.notes
pattern*/

Save a file with desired patterns as 
.gitignore with either direct string matches 
or wildcard globs.

logs/
*.notes
pattern*/

.gitignore

$ git config --global core.excludesfile [file]

System wide ignore pattern for all
local repositories

Git Cheatsheet05



$ git fetch [alias]

Fetch down all the branches from 
that Git remote.

SHARE & UPDATE

Retrieving updates from another 
repository and updating local repos.

$ git remote add [alias] [url]

$ git merge [alias]/[branch]

$ git push [alias] [branch]

Transmit local branch commits to
the remote repository branch.

Add a git URL as an alias.

Merge a remote branch into your current 
branch to bring it up to date.

Local Git
Repository

Remote Git
Repository at [URL]

git remote add
[alias] [URL]

local/main

remote/main

new merge commit

Local Repository

Remote Repository

merge

git push

after merge

Main

origin/main

new merge
commit

Local Repository

Main

Remote Repository

git merge origin/main

after merge

Main

origin/main

Local Repository

Main

Remote Repository

git fetch origin/main

Git Cheatsheet06



$ git reset --hard [commit]$ git pull

Fetch and merge any commits from
the tracking remote branch.

Clear staging area, rewrite working
tree from specified commit.

local/main

remote origin/main

new merge
commit

Local Repository

after merge

git pull

REWRITE HISTORY

Rewriting branches, updating
commits and clearing history.

$ git rebase [branch]

Apply any commits of the current
branch ahead of specified one.

main

Feature

git rebase

TEMPORARY COMMITS

Temporarily store modified, tracked 
files in order to change branches.

$ git stash

Save modified and staged changes.

head

Rewriting Staging Index
& Working Directory

git reset --hard HEAD~1

head

Working Directory
(Unstaged Changes)

git stash

Staged Changes

Git Cheatsheet07



$ git stash list

List stack-order of stashed file changes.

Working
Directory

git stash
stash@(0): WIP on master: fd3aab8 done

git stash
stash@(1): WIP on master: fd3aab8 done

git stash
stash@(2): WIP on master: fd3aab8 done

git stash list

$ git stash pop

Write working from the top of
the stash stack.

Stash List

stash@{0}

stash@{1}

stash@{2}

stash@{3}

stash@{3}
Apply

git stash pop

Working
Directory

$ git stash drop

Discard the changes from the top
of the stash stack.

Stash List

stash@{0}

stash@{1}

stash@{2}

stash@{3}

stash@{3}

git stash drop

(Discard)

Git Cheatsheet08




	Git Cheatsheet_Final
	Git Cheatsheet_Final
	Git Cheatsheet_Final



